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Abstract 

During their first year, infants learn to name objects. To do so, 
they need to segment speech, extract the label and map it to the 
correct referent. While children successfully do so in the wild, 
previous results suggest they struggle to simultaneously learn 
segmentation and object-label pairings in the lab. Here, we ask 
if some of children’s difficulty is related to the uniform 
distribution they were exposed to, since it differs from that of 
natural language, and has high entropy (making it less 
predictable). Will a low entropy distribution facilitate 
children’s performance in these two tasks? We looked at 
children’s (mean age=10;4 years) simultaneous segmentation 
and object-label mapping of words in an artificial language 
task. Low entropy (created by making one word more frequent) 
facilitated children's performance in both tasks. We discuss the 
importance of using more ecologic stimuli in the lab, 
specifically- distributions with lower entropy. 

Keywords: Statistical learning; Multi-modal cues; Word 
segmentation; Word learning; Entropy; Children. 

Introduction 

During the first year of life, infants make their initial steps in 

learning language. One ability they acquire is naming objects. 

To do so, infants need to extract the segmented labels and 

map them onto the correct object. While infants learn some 

object-label mappings early on (Bergelson & Swingley, 

2012), even older children seem to struggle with 

simultaneously learning segmentation and object-label 

pairings in the lab. Previous work examined children’s ability 

to perform both tasks at the same time in a statistical learning 

paradigm (Lavi-Rotbain & Arnon, 2017). Children were 

exposed to an unsegmented speech stream where transitional 

probabilities served as a cue for word boundary (as in Saffran, 

Aslin, & Newport, 1996). The language had an additional 

visual cue to segmentation: each word was matched to an 

image of an object that appeared for the duration of the word 

(e.g., 'dukame'  blue star). The prediction was that the 

visual cue will assist segmentation and allow children to learn 

the object-label pairings, illustrating their ability to integrate 

multimodal cues. As predicted, the results showed that after 

a short exposure (under two minutes) 10;6-year-olds 

managed to learn both aspects (segmentation and object-label 

mapping). However, while children showed some learning of 

the object-label pairing (they were above chance, M=34.4%, 

chance=25%), their learning was relatively poor. Younger 

children (mean age: 7;8 years) did not learn the pairings at all 

(M=25.96%%, chance=25%), even though they are clearly 

capable of relating labels to objects in natural language. Why 

then do children struggle with this task in the lab? And what 

can we learn from their difficulty about the factors that 

impact children’s language learning?  Here, we ask how the 

distributional properties of the language may have impeded 

learning. In particular, we focus on the use of a uniform 

distribution – where all items are equally frequent. This was 

the distribution used in the previous study, and one that is 

used in most statistical learning studies.  

A uniform distribution of stimuli, where every element 

(e.g. word) is presented the same number of times, differs 

from what is found in natural language. Words in natural 

language have a Zipfian distribution (Zipf, 1936) with few 

very frequent words, and most words having low frequency. 

The Zipfian distribution is a highly skewed distribution, with 

a narrowed peak for the small number of very frequent words, 

and a long tail for the rest of the words. Words show a Zipfian 

distribution across many languages, in both adult-to-adult 

speech (Zipf, 1936; Piantadosi, 2014) and child directed 

speech (Hendrickson & Perfors, 2019; Lavi-Rotbain & 

Arnon, submitted). Other aspects of language, like 

grammatical categories, also show a Zipfian distribution 

(Piantadosi, 2014; Lavi-Rotbain & Arnon, submitted). 

Interestingly, the objects that infants see also show a Zipfian 

distribution (Clerkin, Hart, Rehg, Yu, & Smith, 2017). That 

is, using a uniform distribution does not accurately reflect the 

distribution of words (or objects) that children are exposed 

to.  

Moreover, uniform distributions are also less predictable 

than non-uniform distributions. One way to quantify the 

difference between them is to use Shannon's Entropy 

(Shannon, 1948). Entropy quantifies how unpredictable a 

distribution is as a whole, with higher entropy assigned to less 

predictable distributions. The uniform distribution is the least 

predictable - it is hard to guess which word will appear next 

when they all have equal probabilities - and consequently has 

high entropy. Non-uniform distributions, such as Zipfian 

distributions, are more predictable, and have lower entropies: 

it is easier to guess the next word when only a few are highly 

probable.  

Here, we ask if children’s simultaneous learning of 

segmentation and object-label pairings will be facilitated 

when using a distribution with low unigram entropy. Such a 

finding would have several important implications. First, it 

would indicate that children are sensitive to entropy, thereby 

expanding our understanding of the distributional properties 



that impact learning. Second, it would highlight the 

importance of using stimuli that are more ecologically valid 

in their distributional properties: If children show better 

learning from a low entropy distribution, then previous 

conclusions about their ability to use multimodal cues may 

not be accurate. Under more natural conditions, children may 

show learning that was not previously detected. To give an 

example from another domain, children’s knowledge of 

irregular plurals is much better when they are produced in 

familiar frames, as they are often produced in natural 

language (e.g. children produce "teeth" more accurately after 

"brush your---” compared to on its own, Arnon & Clark, 

2011).  Assessing children’s morphological knowledge using 

single word elicitation under-estimated their true abilities, 

and could lead to inaccurate conclusions (e.g., that they have 

not learned the correct irregular form yet). Similarly, 

performance in artificial language learning studies improves 

when there are multiple cues to segmentation, as is found in 

natural language. Visual cues for word boundaries improve 

segmentation in adults (Cunillera, Camara, Laine, & 

Rodriguez-Fornells, 2010), as does the use of one-to-one 

mappings between words and objects (children: Lavi-Rotbain 

& Arnon, 2017; adults: Thiessen, 2010). Under these 

conditions, children and adults show better learning. 

Will a reduction in entropy have a similar facilitative effect 

on learning? Looking at another domain, adults' cross-

situational learning of novel object-label mappings was 

facilitated after exposure to a Zipfian distribution (with low 

entropy) compared to a uniform distribution (with high 

entropy) (Hendrickson & Perfors, 2019, Experiment 2). This 

facilitative effect was not found when words and labels were 

presented one at a time: the authors propose that Zipfian 

distributions are beneficial only when learners are faced with 

ambiguity. In such cases, the very frequent word can be 

learned early on and used to disambiguate later trials.  

Another reinforcement to the potential advantage of low 

entropy distributions comes from word segmentation studies: 

children's and adults' segmentation is facilitated when the 

input had low entropy (entropy was reduced by making one 

word more frequent than the other, Lavi-Rotbain & Arnon, 

2018, 2019), and when it has a Zipfian distribution 

(Kurumada, Meylan, & Frank, 2013). 

 Here, we expand on these findings to look at the effect of 

reduced entropy on word learning in children: will lower 

entropy facilitate learning in a task that involves both 

segmentation and object-label mapping? The segmentation 

task is inherently ambiguous: since learners are exposed to an 

unsegmented stream, successfully segmenting one word can 

help in segmenting the rest. An additional facilitative effect 

can come from the overall greater predictability of the input: 

non-uniform distributions are more predictable and have 

lower entropy. If learners are sensitive to such measures of 

the environment, then learning may be facilitated even in 

non-ambiguous situations. Since both factors are relevant for 

the segmentation task, we hypothesized that segmentation 

will be better under low entropy. The predictions are less 

clear about learning the object-label mappings. On the one 

hand, this task does not involve ambiguity: the same object is 

always presented with the same label. At the same time, the 

overall predictability of the mappings is greater in the non-

uniform distribution. If there is an effect of reduced entropy 

regardless of ambiguity, we should see a facilitative effect 

here as well. We hypothesized that learning the object-label 

mappings will also be facilitated under low entropy.  

The current study 

In the current study, we use the same artificial language 

learning paradigm used previously to examine children’s 

learning of multimodal information (Lavi-Rotbain & Arnon, 

2017). Children are exposed to an unsegmented speech 

stream containing four novel words, with consistent word-

object pairings (each word is paired with an object: e.g., 

'dukame' with a blue star). We ask if children will show better 

learning of both segmentation and object-label pairings when 

exposed to low entropy input compared to high entropy input. 

We focus our inquiry on words that have lower frequency. 

Frequency is known to affect word learning during infancy 

with more frequent words learned earlier (Goodman, Dale, & 

Li, 2008). Frequency, however, does not account for all the 

variance in a words’ age-of-acquisition. It is easy to find 

examples of low frequency words among the early acquired 

ones: for example, the word ' cheek' is learned at 22 months 

(Frank, Braginsky, Yurovsky, & Marchman, 2017), but 

appears only 18 per million. Could the low entropy found for 

words in natural language help children learn low frequency 

words? Finding such a pattern in our experimental 

manipulation would open up new avenues for understanding 

how low frequency words are acquired.  

We manipulate entropy by making one word much more 

frequent: in the high entropy condition, all words appeared an 

equal number of times (each word appeared 32 times). In the 

low entropy condition, one word was much more frequent 

(appearing 214 times), while the other three appeared 19 

times (half of the frequency of the words in the high entropy 

condition). We compare segmentation and word-object 

pairings for the low frequency words from the low entropy 

condition (which appeared 19 times) with the words from the 

high entropy condition (which appeared 32 times). If children 

are mostly sensitive to frequency, then learning should be 

better in the high entropy condition. However, if children are 

sensitive to more than mere frequency, in particular to the 

entropy of the distribution, than learning of the low frequency 

words should be better in the low entropy condition. If this 

happens regardless of ambiguity, then we should see better 

performance due to entropy reduction for both segmentation 

and learning the correct object-label pairings. 

Method 

Participants 

61 children took part in this Experiment (age range: from 9;0 

to 12;0 years, mean age: 10;4 years; 27 boys, 34 girls). We 

chose this age range since it matches the one used in the older 



group of Lavi-Rotbain & Arnon (2017), where children 

showed poor learning of the object-label pairings. 

Participants were visitors at the Bloomfield Science Museum 

in Jerusalem and were recruited for this study as part of their 

visit to the Living Lab. Parental consent was obtained for all 

participants. None of the children had known language or 

learning difficulties and all were native Hebrew speakers. 

Each child received a small prize for their participation.  

Materials  

Auditory stimuli 

All participants were exposed to a familiarization stream 

corresponding to the condition they were assigned to. All 

streams were composed of the same four unique tri-syllabic 

synthesized words: "dukame", "nalubi", "kibeto", and 

"genodi". We used only four words to make the task learnable 

for children. As the results show, even this number proved 

challenging for children. The twelve different syllables 

making up the words were taken from Glicksohn & Cohen 

(2013). The syllables were created using the PRAAT 

synthesizer (Boersma & van Heuven, 2001) and were 

matched on pitch (~76 Hz), volume (~60 dB), and duration 

(250–350 ms). The four words were created by concatenating 

the syllables using MATLAB to ensure that there were no co-

articulation cues to word boundary. The words were matched 

for length (average word length- 860ms, range=845-888ms). 

The words were then concatenated together using MATLAB 

in a semi-randomized order to create the auditory 

familiarization streams. Importantly, there were no breaks 

between words and no prosodic or co-articulation cues in the 

stream to indicate word boundaries. The only cue for word 

boundaries was transitional probabilities (TP's): TP's 

between words were lower compared to TP's within words. 

   

Experimental conditions 

We created two auditory sequences, corresponding to two 

levels of entropy: high and low. In the high entropy level, 

words followed a uniform distribution with each word 

appearing 32 times in a semi-randomized order (no word 

appeared twice in a row). The sequence had 128 tokens and 

lasted 1:50 minutes. TP's within a word were 1, and TPs 

between words were 0.333. In the low entropy level, words 

appeared with a skewed distribution: one word appeared 80% 

of the time (214 appearances) while each of the other three 

words appeared only 7% of the time (19 appearances for each 

word). The sequence had 271 tokens and lasted 3:50 minutes. 

The identity of the frequent word was counterbalanced across 

subjects in the low entropy condition to prevent item-specific 

effects. TP's within a word were 1, but the TP's between 

words varied depending on the next word (since the frequent 

word in this condition was more likely to occur). See Table 1 

for full details of the experimental conditions. 

Visual stimuli  

While listening to the audio stream, participants saw shapes 

on the screen whose appearance was synchronized with word  

 

boundaries. Shapes appeared at word onset and remained 

onscreen for the duration of the word. Each word appeared 

always with the same shape and vice versa ("dukame": blue 

star, "nalubi": green hexagon, "kibeto": purple heart, and 

"genodi": orange diamond). In the low entropy condition, 

when the same word appeared twice in a row, the shape 

disappeared briefly (for 200 ms) at the end of the first 

occurrence and reappeared with the second occurrence onset. 

The visual stimuli is modelled on the regular condition from 

Thiessen (2010) and Lavi-Rotbain & Arnon (2017), which 

was shown to facilitate segmentation in both adults and 

children. See Fig. 1 for an illustration. 

Segmentation test 

This test asked how well children segmented the continuous 

stream into words using 16 two alternative forced-choice 

trials. The visual stimuli did not appear on screen during test. 

Participants heard two words and were asked to decide which 

belonged to the language they heard. We used non-words as 

foils ("dunobi", "nabedi", "kilume", and "gekato", average 

length: 860ms; range 854-868ms), created by taking three 

syllables from three different words, while keeping their 

original position. We used non-words (instead of part-words) 

as foils since these are easier to distinguish from ‘real’ words. 

Since children struggle with this task, we chose to focus only 

on the “easier” non-word vs. word distinction. Each of the 

four words appeared once with each of the four foils to create 

16 trials (in a random order, with the constraint that the same 

word/foil did not appear in two consecutive trials). The order 

of words and foils was counter-balanced so that in half the 

trials, the real word appeared first and in the other half, the 

foil appeared first. 

 

 

 

Fig. 1: Audio-video illustration  

Table 1:  Different experimental conditions 

 High entropy 

(Uniform) 

Low entropy  

Exposure length 

[minutes] 
1:50 3:50 

Number of 

tokens 
128 271 

Tokens per 

word 
32 

Frequent: 214 

Infrequent: 19 

Unigram 

entropy [bits] 
2 1.1 

TP's between 

words 
0.33 

For the frequent 

word: 0.75 

For infrequent 

words: 0.08 



Word–shape correspondence test 

This test asked how well children learned the correspondence 

between the words and the shapes. In each trial, children saw 

the four shapes on the screen and heard one of the four words. 

Then, they had to choose the shape corresponding to the 

word. Each word was repeated four times on non-consecutive 

trials, to create 16 trials that appeared in a random order 

between subjects.  

Procedure  

After receiving parental consent, children were seated in front 

of a computer station with a noise-blocking headset next to 

an experimenter. The children were told they are about to 

hear an alien language, and that they need to pay attention to 

what they will see and hear and try to learn it as best as they 

can. Each child was randomly assigned to one of the two 

experimental conditions. After the exposure phase, children 

completed a segmentation test and a word-shape 

correspondence test. The instructions were identical in all 

conditions. 

Results 

Children were divided as follows between the two conditions: 

high entropy, N=28; low entropy, N=33. Age did not differ 

across entropy conditions (F(1)=0.195, p=0.66). In the low 

entropy condition, the frequent word was counterbalanced 

across subjects. A one way ANOVA revealed that 

performance was not impacted by which word was the 

frequent one in the segmentation test (F(3)=2.326, p=0.1), or 

in the recognition test (F(3)=0.52, p=0.67). Consequently, in 

all subsequent analyses we collapsed the data across the 

different frequent words. 

Segmentation analysis 

Children showed learning (were above chance) in both 

conditions (low entropy condition: M=73.9%, t(32)=7.69, 

p<0.001; high entropy condition: M=65.2%, t(27)=4.83, 

p<0.001). However, this success rate includes both the 

frequent and the infrequent word for the low entropy 

condition. Since the frequent word had much higher 

frequency (214 appearances) than the other words (19 

appearances) in the low entropy condition, it does not make 

sense to include the frequent word in our analysis. In order to 

examine the effect of entropy on low frequency words alone, 

we looked only at trials where  the correct answer was  a low 

 

Fig. 2:  Mean segmentation score of low frequency words 

by entropy condition with 95% confidence intervals 

frequency word (appearing 19 times during exposure). This 

left 12 trials per participant. In this subset of the segmentation 

test, children showed learning above chance of the infrequent 

words (low entropy condition: M=73.0%, t(32)=7.0, 

p<0.001) (see Fig. 2). We will now compare this mean to the 

one from the high entropy condition (73.0% versus 65.2% 

respectively). 

We used mixed-effect linear regression model to examine 

the effect of entropy level on segmentation of infrequent 

words. Following Barr et al. 2013, the models had the 

maximal random effect structure justified by the data that 

would converge. Our dependent binominal variable was 

success on a single trial of the segmentation test. We had 

entropy condition (high entropy condition as baseline) as a 

fixed effect, as well as: age-in months (centered); gender; 

trial number (centered); and order of appearance in the test 

(word-first trials vs. foil-first trials). The model had random 

intercepts for participants and for item (Table 2). To examine 

the overall effect of entropy, we used model comparisons.  

As predicted, entropy level impacted segmentation of low 

frequency words (chi(1)=3.2, p=0.07). Participants showed 

better segmentation of low frequency words in the low 

entropy condition compared to the high entropy condition, 

despite appearing half the times (β=0.42, SE=0.23, p=0.07). 

Order of appearance in the test significantly affected 

segmentation, with better accuracy on trials where the word 

appeared before the foil (β=0.39, SE=0.16, p<0.05), as has 

been found in previous studies (Lavi-Rotbain & Arnon, 2017; 

Raviv & Arnon, 2018). Since the order of presentation of 

 Table 2: Mixed-effect regression model for segmentation of infrequent words. Variables in bold were 

significant. Significance obtained using the lmerTest function in R. 

 

  Estimate Std. Error z value p-value  

 (Intercept) 0.69584     0.21439 3.246 <.01 **  

 Age (centered) 0.23516     0.14220    1.654   =0.098 .  

 Low entropy condition 0.42079     0.23321    1.804   =0.07 .  

 Gender (male) -0.03948     0.11747   -0.336   >.1  

 Trial number (centered) -0.02390     0.01705   -1.401   >.1  

 Order of appearance (word) 0.19385     0.07844    2.471   <.05 *  



words and foils was counter-balanced this could not reflect a 

preference for pressing 1 or 2, and is in line with the "interval 

bias" which is often found in 2AFC tests (Yeshurun, 

Carrasco, & Maloney, 2008). Age almost reached 

significance: older children were slightly better than younger 

ones (β=0.24, SE=0.14, p=0.098). Trial number and gender 

did not affect segmentation (trial number: β= -0.02, SE=0.02, 

p>0.1; gender: β= -0.08, SE=0.23, p>0.1).  

The beneficial effect of low entropy on segmenting low 

frequency words cannot be attributed to learning only the 

frequent word, and ruling out foils due to syllables they share 

with the frequent word. To see if there is a difference between 

trials in the low entropy condition where the foil shared one 

syllable with the frequent word (M=72.7%) and trials where 

it didn’t (M=77.3%) we used a linear regression model with 

success on a single trial as the dependent binominal variable, 

and "is foil frequent" (assigned '1' for trials in which the foil 

shared any of its three syllables with the frequent word and 

‘0’ when it didn’t) as a fixed effect, as well as log frequency 

(centered), gender, trial number (centered); and order of 

appearance in the test. The model had random intercepts for 

subjects and for items. "Is foil frequent" was not a significant 

predictor of accuracy (β= -0.27, SE=0.25, p>0.1), neither all 

the other fixed effects. That is, children in the low entropy 

condition indeed learned the low frequency words better. 

Recognition analysis 

Children showed learning of object-label pairings (were 

above chance) in the low entropy condition (M=49.3%, 

chance=25%, t(32)=5.16, p<0.001). In contrast, they were 

not above chance in the high entropy condition (M=32.7%, 

chance=25%, t(27)=1.66, p=0.11). The accuracy in the high 

entropy condition is similar to that from Lavi-Rotbain & 

Arnon (2017), using the same task and uniform distribution 

(M=34.4%). While children did show learning in the previous 

study (just above chance), their performance was still poor, 

indicating difficulty in learning the mappings from a uniform 

distribution. How well did children learn the infrequent 

words in the low entropy condition? As in the segmentation 

test, the mean accuracy in the low entropy includes also 

recognition of the frequent word. In order to look at 

recognition of low frequency words, we looked only at trials 

where the correct word was a low frequency word (12 trials 

per child). Since children learned the frequent word quite 

well (M=64.6%), we assume that chance level on each trial is 

not 25% but 33% (since they could rule out the shape 

corresponding to the frequent word). Note however that this 

is a quite rigid assumption: children did not show complete 

learning of the frequent word (they were incorrect 35% of the 

time), and there was very large variance in accuracy 

(SD=37.9%), meaning that for some trials they were picking 

between four options. Nevertheless, we put our prediction to 

a stringent test and assume that chance is 33% for the low 

frequency words. As predicted, children learned the 

infrequent words above chance in the low entropy condition 

(M=44.0%, chance=33%, t(32)=2.14, p<0.05) (see Fig. 3). 

This means that while in the uniform condition children did  

 

Fig. 3:  Mean recognition score of low frequency words 

by entropy condition with 95% confidence intervals 

not show learning of the object-label pairings (were not above 

chance), children in the low entropy condition did show 

learning even of the infrequent words, despite appearing half 

the number of times and despite the rigid chance level. 

Is there a correlation between segmentation and 

recognition scores? Previous results showed positive 

correlation in adults' performance between these two tasks, 

indicating that better segmentation went along with better 

word learning (Lavi-Rotbain & Arnon, 2017; Thiessen, 

2010). However, such a correlation was absent in children's 

performance (Lavi-Rotbain & Arnon, 2017). Here, we found 

a positive correlation only in the low entropy condition: 

children who performed well in the segmentation test, were 

also good at mapping labels to objects (R2=0.4, t(31)=2.42, 

p<0.05), highlighting the connection between segmentation 

and word learning found in natural language. Such a 

correlation was not found in the high entropy condition 

(R2=0.21, t(26)=1.12, p>0.1).  

Discussion 

We set to ask whether children’s ability to segment and learn 

object pairings for low frequency words will be better when 

learning from low entropy input compared to high entropy 

input. To do so, we examined children's performance in an 

artificial language across two levels of entropy (high and 

low), in two tasks: segmentation and object-label pairing. 

Entropy was reduced by making one word more frequent than 

the rest, so that it appeared 80% of the time. We focused on 

children’s performance on low frequency words (that 

appeared only 19 times in the low entropy condition, versus 

32 in the high entropy condition). Our results show that 

entropy reduction is beneficial for children's segmentation, 

(see also Lavi-Rotbain & Arnon, 2018, 2019), as well as for 

their learning of object-label mapping. In addition, we found 

a positive correlation between segmentation and mapping 

only under the low entropy condition. Based only on findings 

from the uniform conditions from this study and from Lavi-

Rotbain & Arnon (2017), one could conclude that children 

are not able to simultaneously learn segmentation and object-



label mapping (at least in lab conditions). However, the low 

entropy condition offers an alternative explanation: when 

exposed to more predictable and ecological input, children 

show evidence of learning both tasks at the same time. 

Importantly, children’s object-label accuracy was still not 

good, raising the need to find ways to make the task easier: 

we predict that the effect of reduced entropy will be stronger 

once that is done. We are currently running a similar study 

with the younger age group (that showed no learning of the 

object-label mappings in the previous study), to see if entropy 

reduction will have a similar facilitative effect on this age 

group and will enable them to learn both the segmentation 

and object-label pairing. 

Why did the low entropy condition facilitate learning? 

Several inherent properties of low entropy distributions may 

be facilitative for learning. First, creating a low entropy in the 

way we did drastically increases the frequency of one or more 

of the words. These highly frequent words can be learned 

relatively early on and later serve as an anchor for learning 

other words, similar to presenting words in isolation prior to 

presenting the unsegmented stream (Cunillera, Càmara, 

Laine, & Rodríguez-Fornells, 2010). In addition, TP's 

between the frequent and infrequent words can be lower and 

hence be more salient for learning. However, we suggest that 

there is more to the low entropy condition that facilitates 

learning than anchoring and lower TP's. Language learners 

may be sensitive to the overall predictability of the input, and 

learn better from input with lower entropy. Such an account 

predicts that entropy reduction will also facilitate learning 

when there is less ambiguity. Our results provide some 

support for this, by showing that learning was improved also 

for the non-ambiguous object-label pairings (contra the 

prediction made in Hendrickson & Perfors, 2019). This 

prediction is also supported by findings showing that adults’ 

word segmentation is facilitated in a low entropy condition 

compared to a medium entropy one, despite both having 

similar anchoring and TP cues (Lavi-Rotbain & Arnon, 

2019). Further work is needed to understand what exactly 

about low entropy is facilitative and how that relates to the 

input that children are actually exposed to. 

From a methodological perspective, our results highlight 

the importance of creating experimental stimuli that better 

reflect the input children hear. In particular, most SL studies 

use a uniform distribution during exposure, although the 

distribution itself is not relevant for their research question. 

However, by doing so, we may be introducing unnecessary 

difficulties for our participants that may interfere with our 

assessment of their abilities. For children, who find artificial 

language learning experiments harder to begin with, such 

factors may impact performance more, and more easily. 

Theoretically, the findings point to the importance of 

studying the impact of entropy on language learning. Entropy 

has been studied across many domains of language, including 

language processing, use and structure (e.g., Cohen Priva, 

2017; Linzen & Jaeger, n.d.; Piantadosi, Tily, & Gibson, 

2011). For example, there is evidence that the entropy of 

single words is restricted to a small range of values across 

many languages, suggesting that speakers have similar 

preferences for how predictable their languages are (Bentz, 

Alikaniotis, Cysouw, & Ferrer-i-Cancho, 2017). In addition, 

there is a trade-off between unigram and trigram entropy over 

time across many languages, indicating that speakers 

maintain a relatively constant information rate (Cohen Priva 

& Gleason, 2016). Children also show sensitivity to such 

measures: two-year-olds show better repetition of unfamiliar 

four-words sequences when the final word "slot" has higher 

entropy (Matthews & Bannard, 2010). These studies show 

that language users are sensitive to entropy and other 

information-related measures, and suggest that languages are 

shaped by constrains arising from these measures. However, 

the role of entropy on language learning is understudied. Our 

results show that entropy effects are found in children and 

impact learning of both segmentation and word labels.  

Our results may offer a possible explanation for how 

children acquire low frequency words at a relatively early 

age. Words in natural language show a Zipfian distribution, 

in which most of the words have low frequencies. Under a 

low entropy distribution, such as the Zipfian distribution, the 

disadvantage of low frequency can turn into an advantage: 

the few frequent words can serve as an anchor for learning 

the low frequency ones. We are currently conducting a series 

of studies to examine the role of entropy in natural language 

learning, and in predicting variance in age-of-acquisition. 

Acknowledgments 

We wish to thank Zohar Aizenbud for her help with creating 

the study; the Living Lab staff and the Bloomfield Science 

Museum in Jerusalem and Noam Siegelman for his help in 

analyses. The research was funded by the Israeli Science 

Foundation grant number 584/16 awarded to the second 

author.  

References  

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). 

Random effects structure for confirmatory hypothesis 

testing: Keep it maximal. Journal of Memory and 

Language, 68(3), 255–278.  

Bentz, C., Alikaniotis, D., Cysouw, M., & Ferrer-i-Cancho, 

R. (2017). The entropy of words-Learnability and 

expressivity across more than 1000 languages. Entropy, 

19(6), 1–32. 

Bergelson, E., & Swingley, D. (2012). At 6-9 months, human 

infants know the meanings of many common nouns. 

Proceedings of the National Academy of Sciences, 109(9), 

3253–3258.  

Boersma, P., & van Heuven, V. (2001). Speak and unSpeak 

with Praat. Glot International, 5(9–10), 341–347. 

Clerkin, E. M., Hart, E., Rehg, J. M., Yu, C., & Smith, L. B. 

(2017). Real-world visual statistics and infants’ first-

learned object names. Philosophical Transactions of the 

Royal Society B: Biological Sciences, 372(1711), 

20160055.  

Cohen Priva, U. (2017). Not so fast: Fast speech correlates 

with lower lexical and structural information. Cognition, 



160, 27–34. Retrieved from 

Cohen Priva, U., & Gleason. (2016). Simpler structure for 

more informative words : a longitudinal study. Proceedings 

of the 38th Annual Conference of the Cognitive Science 

Society, (2012), 1895–1900. 

Cunillera, T., Camara, E., Laine, M., & Rodriguez-Fornells, 

A. (2010). Speech segmentation is facilitated by visual 

cues. Quarterly Journal of Experimental Psychology 

(2006), 63(2), 260–274. 

Cunillera, T., Càmara, E., Laine, M., & Rodríguez-Fornells, 

A. (2010). Words as anchors: Known words facilitate 

statistical learning. Experimental Psychology, 57(2), 134–

141. 

Frank, M. C., Braginsky, M., Yurovsky, D., & Marchman, V. 

A. (2017). Wordbank: An open repository for 

developmental vocabulary data. Journal of Child 

Language, 44(3), 677–694. 

Glicksohn, A., & Cohen, A. (2013). The role of cross-modal 

associations in statistical learning. Psychonomic Bulletin 

& Review, 20(6), 1161–1169.  

Goodman, J. C., Dale, P. S., & Li, P. (2008). Does frequency 

count? Parental input and the acquisition of vocabulary. 

Journal of Child Language, 35(3), 515–531. 

Hendrickson, A. T., & Perfors, A. (2019). Cross-situational 

learning in a Zipfian environment. 189(May 2017), 11–22. 

Kurumada, C., Meylan, S. C., & Frank, M. C. (2013). Zipfian 

frequency distributions facilitate word segmentation in 

context. Cognition, 127(3), 439–453.  

Lavi-Rotbain, O. & Arnon, I. (submitted). Zipf's Law in 

Child-Directed Speech. 

Lavi-Rotbain, O. & Arnon, I, (2018, November). Frequency 

or predictability? The effect of entropy on statistical 

learning in children and adults. Poster session presented at 

the Boston University Conference on Language 

Development, Boston, MA.  

Lavi‐Rotbain, O., & Arnon, I. (2019). Low Entropy 

Facilitates Word Segmentation in Adult Learners, 

Proceedings of the 41st Annual Conference of the 

Cognitive Science Society. Cognitive Science Society 

Lavi-Rotbain, O., & Arnon, I. (2017). Developmental 

Differences Between Children and Adults in the Use of 

Visual Cues for Segmentation. Cognitive Science.  

Linzen, T., & Jaeger, T. F. (2014). Investigating the role of 

entropy in sentence processing. ACL 2014, 10. 

Matthews, D., & Bannard, C. (2010). Children’s production 

of unfamiliar word sequences is predicted by positional 

variability and latent classes in a large sample of child-

directed speech. Cognitive Science, 34(3), 465–488. 

Piantadosi, S. T. (2014). Zipf’s word frequency law in natural 

language: A critical review and future directions. 

Psychonomic Bulletin & Review, 21(5), 1112–1130.  

Piantadosi, S. T., Tily, H., & Gibson, E. (2011). Word lengths 

are optimized for efficient communication. Proceedings of 

the National Academy of Sciences of the United States of 

America, 108(9), 3526–3529. 

Raviv, L., & Arnon, I. (2018). The developmental trajectory 

of children’s auditory and visual statistical learning 

abilities: modality-based differences in the effect of age. 

Developmental Science, 21(4), 1–13. 

Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). 

Statistical learning by 8-month-old infants. Science (New 

York, N.Y.), 274(5294), 1926–1928. 

Shannon, C. E. (1948). A mathematical theory of 

communication. The Bell System Technical Journal, 27, 

379–423. 

Thiessen, E. D. (2010). Effects of Visual Information on 

Adults’ and Infants’ Auditory Statistical Learning. 

Cognitive Science, 34(6), 1093–1106.  

Yeshurun, Y., Carrasco, M., & Maloney, L. T. (2008). Bias 

and sensitivity in two-interval forced choice procedures: 

Tests of the difference model. Vision Research, 48(17), 

1837–1851. 

Zipf, G. (1936). The Psychobiology of Language. London: 

Routledge. 

 


